246 research outputs found

    Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    Get PDF
    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas

    Supersonic reacting internal flow fields

    Get PDF
    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described

    A two-dimensional numerical simulation of a supersonic, chemically reacting mixing layer

    Get PDF
    Research has been undertaken to achieve an improved understanding of physical phenomena present when a supersonic flow undergoes chemical reaction. A detailed understanding of supersonic reacting flows is necessary to successfully develop advanced propulsion systems now planned for use late in this century and beyond. In order to explore such flows, a study was begun to create appropriate physical models for describing supersonic combustion, and to develop accurate and efficient numerical techniques for solving the governing equations that result from these models. From this work, two computer programs were written to study reacting flows. Both programs were constructed to consider the multicomponent diffusion and convection of important chemical species, the finite rate reaction of these species, and the resulting interaction of the fluid mechanics and the chemistry. The first program employed a finite difference scheme for integrating the governing equations, whereas the second used a hybrid Chebyshev pseudospectral technique for improved accuracy

    Supersonic combustor modeling

    Get PDF
    The physical phenomena involved when a supersonic flow undergoes chemical reaction are discussed. Detailed physical models of convective and diffusive mixing, and finite rate chemical reaction in supersonic flow are presented. Numerical algorithms used to solve the equations governing these processes are introduced. Computer programs using these algorithms are used to analyze the structure of the reacting mixing layer. It is concluded that, as in subsonic flow, exothermic heat release in unconfined supersonic flows retards fuel/air mixing. Non mixing is shown to be a potential problem in reducing the efficiency of supersonic as well as subsonic combustion. Techniques for enhancing fuel/air mixing and combustion are described

    The Effect of Turbulence Modeling on the Mixing Characteristics of Several Fuel Injectors at Hypervelocity Flow Conditions

    Get PDF
    CFD analysis is presented on the effects of turbulence modeling choices on the mixing characteristics and performance of three fuel injectors at hypervelocity flow conditions. The analyses were carried out with the VULCAN-CFD solver using Reynolds-Averaged Simulations (RAS). The hypervelocity flow conditions match the high Mach number flow of the experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The three injectors are the baseline configurations used in the experiments and represent three categories of injectors typically considered individually or in combination for fueling high-speed propulsive devices. The current work discusses the impact of the turbulence model and the turbulent Schmidt number on the mixing flow field behavior and the mixing performance as described by the one-dimensional values of the Mach number, total pressure recovery, and the mixing efficiency. Because planar laser induced fluorescence (PLIF) images are available from the EIMP experiments, the sensitivity of the synthetic LIF signal to turbulence modeling choices is also examined to determine whether PLIF can be extended beyond its intended qualitative visualization purpose and used to guide CFD turbulence model and parameter selections. It is found that the mixing performance, as quantified using mixing efficiency, exhibits a strong sensitivity to both turbulence model choice and turbulent Schmidt number value. However, the synthetic LIF signal only demonstrates a modest level of sensitivity, which suggests that PLIF is of limited use for guiding CFD turbulence model and parameter selections

    Comparison of Mixing Characteristics for Several Fuel Injectors at Mach 8, 12, and 15 Hypervelocity Flow Conditions

    Get PDF
    CFD analysis is presented of the mixing characteristics and performance of three fuel injectors at flight Mach numbers of 8, 12, and 15. The Reynolds-averaged simulations (RAS) were carried out using the VULCAN-CFD solver. The high Mach number flow conditions match those of the experiments conducted as a part of the Enhanced Injection and Mixing Project (EIMP) at the NASA Langley Research Center. The EIMP aims to investigate scramjet fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies relevant to flight Mach numbers greater than 8. The injectors include a fuel placement device, a strut, and a fluidic vortical mixer, a ramp. These fuel injectors accomplish the necessary task of distributing and mixing fuel into the supersonic cross-flow, albeit via different strategies. For comparison, a flush-wall injector is also included. This type of injector generally represents the simplest method of introducing fuel into a scramjet combustor. The three injectors represent the baseline configurations of the EIMP experiments. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are computed from the RAS and compared for the three flight conditions and injector configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations. Plotting the total pressure recovery and thrust potential as a function of mixing efficiency provides added insight into critical aspects of combustor performance as the flight condition and injector type are varied

    Overview of NATO Background on Scramjet Technology

    Get PDF
    The purpose of the present overview is to summarize the current knowledge of the NATO contributors. All the topics will be addressed in this chapter, with references and some examples. This background enhances the level of knowledge of the NATO scramjet community, which will be used for writing the specific chapters of the Report. Some previous overviews have been published on scramjet technology worldwide. NASA, DOD, the U.S. industry and global community have studied scramjet-powered hypersonic vehicles for over 40 years. Within the U.S. alone, NASA, DOD (DARPA, U.S. Navy and USAF), and industry have participated in hypersonic technology development. Over this time NASA Langley Research Center continuously studied hypersonic system design, aerothermodynamics, scramjet propulsion, propulsion-airframe integration, high temperature materials and structural architectures, and associated facilities, instrumentation and test methods. These modestly funded programs were substantially augmented during the National Aero-Space Plane (X-30) Program, which spent more than $3B between 1984 and 1995, and brought the DOD and other NASA Centers, universities and industry back into hypersonics. In addition, significant progress was achieved in all technologies required for hypersonic flight, and much of that technology was transferred into other programs, such as X-33, DC-X, X-37, X-43, etc. In addition, technology transfer impacted numerous other industries, including automotive, medical, sports and aerospace

    Fuel-Air Mixing and Combustion in Scramjets

    Get PDF
    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section

    Comparison of Mixing Characteristics for Several Fuel Injectors on an Open Plate and in a Ducted Flowpath Configuration at Hypervelocity Flow Conditions

    Get PDF
    In order to reduce the cost and complexity associated with fuel injection and mixing experiments for high-speed flows, and to further enable optical access to the test section for nonintrusive diagnostics, the Enhanced Injection and Mixing Project (EIMP) utilizes an open flat plate configuration to characterize inert mixing properties of various fuel injectors for hypervelocity applications. The experiments also utilize reduced total temperature conditions to alleviate the need for hardware cooling. The use of "cold" flows and non-reacting mixtures for mixing experiments is not new, and has been extensively utilized as a screening technique for scramjet fuel injectors. The impact of reduced facility-air total temperature, and the use of inert fuel simulants, such as helium, on the mixing character of the flow has been assessed in previous numerical studies by the authors. Mixing performance was characterized for three different injectors: a strut, a ramp, and a flushwall. The present study focuses on the impact of using an open plate to approximate mixing in the duct. Toward this end, Reynolds-averaged simulations (RAS) were performed for the three fuel injectors in an open plate configuration and in a duct. The mixing parameters of interest, such as mixing efficiency and total pressure recovery, are then computed and compared for the two configurations. In addition to mixing efficiency and total pressure recovery, the combustion efficiency and thrust potential are also computed for the reacting simulations

    Structure and metallicity of phase V of hydrogen

    Get PDF
    A new phase V of hydrogen was recently claimed in experiments above 325 GPa and 300 K. Due to the extremely small sample size at such record pressures the measurements were limited to Raman spectroscopy. The experimental data on increase of pressure shows decreasing Raman activity and darkening of the sample, which suggests band-gap closure and impending molecular dissociation, but no definite conclusions could be reached. Furthermore, the available data is insufficient to determine the structure of phase V, which remains unknown. Introducing saddle-point ab initio random structure searching (sp-AIRSS), we find several new structural candidates of hydrogen which could describe the observed properties of phase V. We investigate hydrogen metallisation in the proposed candidate structures, and demonstrate that smaller band gaps are associated with longer bond lengths. We conclude that phase V is a stepping stone towards metallisation
    • …
    corecore